
1

Logical and Semantic Database Integration

Jacob Köhler1, Matthias Lange2, Ralf Hofestädt2, Steffen Schulze-Kremer3

1 TU Berlin, Germany, jacob.koehler@tu-berlin.de
2 Universität Magdeburg, Germany, {mlange;hofestae}@iti.cs.uni-magdeburg.de
3 Resource Center DHGP, Berlin, Germany, steffen@rzpd.de (to whom correspondence should be directed)

Abstract

Two fundamental approaches for database integration exist: the data warehouse approach attempts to physically
merge data sets from several source databases, whereas database federations simultaneously query source
databases online.

In this paper a database federation approach based on two components will be introduced. The MARGBench
(Freier et al. 1999) is a system which, among other features, enables querying several databases in SQL by
translating SQL queries into a source database specific interface. In this system SQL queries use the database
field labels of the original database, i.e. fields that contain the same kind of information are differently labelled
in different databases. In order to solve this problem, a second system, based on ontologies is currently being
developed. This ontology system will not only include information about semantics of database fields but also
contain information about databases themselves. Thus it will both facilitate database binding and intelligent
database querying. The main concepts and ideas of these two systems will be explained. By using an imaginary
database query it will be demonstrated how the two systems, ontology and MARGBench, will work together in
order to enable querying several databases at the same time.

Introduction

In conjunction with the biotechnology boom and the human genome project (Aldhous 1990), an increasing
amount of data is being generated. The amount of new data is that big that human genetics journals are
increasingly reluctant to publish mutation reports (Krawczak et al. 2000). However much data is often published
in publicly accessible data sources. A query to the literature database PubMed
(http://www.ncbi.nlm.nih.gov/PubMed/) found 299 hits to the query: “(protein or genome) and database” of
which an estimated 50% of the hits were description of distinct genome or protein databases (dated 13.05.2000).
Burks 1999 gives an incomplete list of 200 WWW based data sources. Since every database uses its more or less
powerful and user friendly proprietary user interface, querying these databases can be tedious. The fact that
databases do not only vary in their interfaces but also in their structure and data format makes it especially
difficult to combine information from several databases. Often special databases are created by merging
information from other databases for the investigation of specific scientific areas, such as described by Leser et
al. 1998,Agarwala et al. 2000 and Dashti et al. 1997.

An important idea of database integration is to overcome data distribution. These distributions can be
intentionally or evolutionary grown. In most cases the distribution is the result of many research teams and their
ad-hoc developed data storage methods. Ad-hoc means here the fact, that during the several research activities
originated data have to be stored and the easiest, most economical method was chosen. Consequently data
heterogeneity can manifest itself in several levels: a) storage and access methods b)scheme and unique identifiers
and c) domain and attribute volume of the data.

Database heterogeneity can be found in storage and access methods. Database management systems, operating
systems, network systems, network protocols, query languages, query interfaces and access permission differ
between databases.

Databases can also vary in their data scheme and unique identifiers. Data retrieval is closely connected to
scheme retrieval. Without a data scheme a structured data access is very difficult. In the worst case, databases
cover gigabytes of data, without providing any scheme information. But even if the scheme information is
available, identifiers, i.e. key attribute entries of databases but also the formats of equivalent entries may be
inhomogeneous between databases.

2

Last not least, database heterogeneity can be found in the domain and attribute volume of the data. Domain in
this context means semantic content of the database. Several data collections in the field of molecular biology
cover many different data. These can be DNA-sequences, protein structures, enzyme regulated biochemical
reaction until complex biochemical pathways and related diseases. But even databases which cover the same
domains, for example enzyme databases may vary in their attributes, i.e. the properties which are stored in two
database about the same enzyme is generally different. Special attention will be paid to this issue in this paper.

Consequently database integration has grown into a large area of research (Macaulay et al. 1998). In Karp 1995
four general approaches are described. These are:
ï Hypertext Navigation, i.e. links between databases which can be accessed via http. In the easiest case a well

organised list of links to databases is given, for example Baxevanis 2000.
ï Data Warehouse, i.e. physically merging (converting, importing...) of several databases into one big database
ï Multi Database Queries, i.e. querying several databases at the same time
ï Federated Databases. In contrast to “Multi Database Queries”, federated databases integrate database

schemes in a federation layer. However, like in multi database approaches each database remains
autonomous. An example of a working federation system is described by Matsuda et al. 1999.

Pro and cons of these approaches are discussed by Karp 1995. The advantages and problems of choosing the
database federation approach will be compared to the datawarehouse in the discussion part of this paper.
However, the aims of these approaches are the same: providing a technique to overcome the several kinds of data
heterogeneity to build an unique data retrieval environment for biologists to support their research activities.

In this paper a database federation approach based on two components will be introduced. The MARGBench is a
system which, among other features, enables querying several databases in SQL by translating SQL queries into
a source database specific interface. The MARGBench overcomes heterogeneity issues concerning a) storage
and access methods and b) scheme and unique identifiers. A prototype of the MARGBench is already working.
However heterogeneity of c) domain and attribute volume of data can not yet be overcome by the MARGBench.
A second ontology based component is presently being developed to overcome this kind of heterogeneity.

Ontologies for Data Integration

In Artificial Intelligence, ontologies are systems for knowledge representation based on conceptual graphs.
According to Gruber an ontology is a specification of a conceptualisation (Gruber 1993b, a). One aim in AI
concerning ontologies is to develop methods for knowledge representation, and how knowledge can be
represented in computers. An ontology can be described as a net of nodes and edges. Nodes represent concepts,
i.e. terms to be defined and edges represent relations between terms. Several systems and methods based on this
idea have been developed and are reviewed by Volot et al. 1998. Several ontologies and systems for managing
ontologies have been developed by now. Thus recent research focuses on interoperability and exchanging
ontologies. However, many facts in the field of molecular biology is not organised in ontologies but in databases.
Giudicelli and Lefranc 1999 describe a system where an ontology is being used as an intelligent front-end of a
relational database which enables scientists coming from different domains to use their own terminology for
database querying, thus providing an ontological view of a relational database. As mentioned before, not only
semantics and the terminology used in databases are a problem, but also heterogeneity of databases. Therefore
the use of ontologies for the integration of heterogeneous databases has been suggested (Kashyap and Sheth
1996, Mena et al. 1996, Schulze-Kremer 1997, Goksel and McLeod 1999).

In the subsequent paragraphs, the features needed for a database federation system based on ontologies will be
summarised. In order to generate a useful and widely accepted system, the system should be created with the
potential users in mind, i.e. mainly biologists. Therefore the system should provide an easy to use, yet powerful
query interface which does not require in depth computer skills on the user side. Both the query interface and the
database adding interface should be accessible within a web browser.

It should be possible to connect a database dynamically to the system, i.e. the database providers should be able
to enter all relevant information about their database to the ontology by themselves. Database scheme
information should be used if the database management system provides it. Thus it should be possible to connect
the database to the system interactively with little or no manual intervention of the ontology/MARGBench
operators. Many databases already have an interface, generally using http/html or SQL via JDBC (Java Database
Connectivity). In order to minimise or even avoid changes having to be made in databases when they are
connected to the federation system, their already existing interfaces should be used.

3

Even though many databases contain database fields with equivalent information, both database field labels and
formats of database entries may vary. In order to enable retrieval of data from several databases, the semantics of
equivalent database fields has to be defined. When thinking about operations between databases such as joining
two sets of data from different databases, operations for data conversion are needed. Therefore a meta-database
which stores relevant information about the databases which are accessible from the database federation system
is needed. An ontology based system can be used for this. An ontology is an ideal system for the definition of the
semantics of database fields and by adding extended functionality, it can also be used to organise the relevant
information about the databases involved.

Ontologies tend to get complex. In order to keep them manageable, a graphical interface, representing the
ontology as a web with nodes and edges is needed. It should be possible to access the ontology within a web
browser so that database providers are able to enter all relevant information about their database by themselves
to the system.

It seems sensitive to keep the systems as modular as possible. Both the MARGBench and the ontology
component might be useful components in other contexts: ontologies may for example be used for definition of
terms and the MARGBench is already being used for other purposes.

For further discussion of ontology editing (Schulze-Kremer 1998) and features for database integration by
ontologies see Schulze-Kremer 1997. Another good working example for an intuitive ontology editor is given by
Baker et al. 1998 and Baker et al. 1999.

Methods

MARGBench
The applied integration approach in the prototype of the MARGBench is a hybrid on the basis of the described
approaches by Karp 1995.

First, the data models of the component systems, i.e. databases to be merged have to be analysed. Therefore it is
necessary to analyse the local scheme's information, which is easily achieved when the component systems are
based on database management systems. However, the analysis of scheme information on the basis of WWW or
flat file systems can only be done manually. At present time this has to be done by the MARGBench operators.
However, in the near future this can be done by the database provider by entering all relevant information to the
ontology. This meets the above stated requirement to use all available scheme information.

The access to the component systems is realised using special adapters, which in turn are controlled by an
integration layer. Each adapter has two interfaces. One interface controls the access on the particular component
system. The other transmits the queried data to the integration layer. Those adapters are implemented in a way,
which allows them to access the heterogeneous systems via corresponding interfaces and query languages, i.e.
- Adapters, which access relational data bases via the Internet using JDBC
- HTML-Adapters, which analyse data from WWW pages or
- flat file Adapters, which read the data out of specific files.

These specific adapters enable the access to data sources running on heterogeneous computing systems and using
different interfaces, as demanded above. Once the user submits queries to the integrated system, the data is
retrieved from the component systems. Results of those queries are further submitted to the integration layer by
means of the mentioned adapters. It is the integration layer which merges the results. Basis for this merger is the
global scheme (see below).

Currently, adjustments of the adapters caused by scheme changes in the component systems, have to be
integrated manually. Recent projects are dealing with the opportunities of an automated adapter adjustment. One
possible solution for component systems based on data base management systems, could be the use of the
available scheme information for a re-generation of the adapters. A second approach is the development of the
ontology component which serves as a meta-database where the database provider can update the information
about his database whenever it is necessary.
In the section “implementation”, a more detailed description of the integration, the architecture, and the function
of the prototype, the so called BioDataServer is given.

4

Ontology
As mentioned before, the MARGBench provides SQL access via JDBC to several databases. The lobal scheme
has to use the database field labels of the original database, i.e. fields that contain the same kind of information
are differently labelled in different databases. In order to overcome this semantic problem, the concepts of the
relevant database labels will be defined in an ontology. From these definitions, pointers will be set to all
equivalent database fields. This will make it possible to localise equivalent database fields in different databases,
even if the database fields are differently labelled (see figure 1).
Another functionality of the ontology system is to provide a powerful user interface to the federated databases.
By making use of the is_a, synonym and homonym relations of the ontology, an “intelligent” user interface
which recognises synonyms and subconcepts and checks for ambiguity of terms in a query term can be
generated.

organismthing
is_a is_a is_a

... rat
synonym

 cell

is_a... consists of

creature

...

consists of
...

consists of
...

proteinDNA

DNA-sequence

is property of

...

is property of

DB1
AU DNS AB ID Organism
Lenz, A cctgga... The prot... 82247835 ra t
Coen, A ctggat... Analysis... 81245818 mouse
... DB2

Author Sequence descr Medl Spec
Lenz, A cctggacctgga... The prot... 82247835 Rattus nor...
Coen, A ct ggatctggag... Analysis... 81245818 Mus musc.. .
...

Figure 1: Principle of ontology based database integration. The semantics of two databases, DB1 and DB2 with
equivalent content but different database attribute labels can be defined by binding them to the relevant concepts
of the ontology. Concepts of the ontology are displayed in boxes, thin arrows represent relations between
concepts, and thick arrows represent pointers between the ontology and the databases.

5

Implementation

In the subsequent paragraphs, details concerning the implementation of the MARGBench and the ontology
component will be described.

MargBENCH

Figure 2: Integration service of the MARGBench

The integration service consists of the subsequent six components (see figure 2):

The Query Interface
By means of the query interface the user has the opportunity to interactively communicate with the
BioDataServer. There are two distinct kinds of communication. First, a query language is provided which helps
to make complex and declarative queries onto the integrate data bases. That language is a subset of SQL.
Second, one can administratively control the function of the server, for instance request status information and
submit commands to control the server.

User and Scheme Information
The BioDataServer has been developed for multi-user operation. Respectively, an administration of several user
profiles has been incorporated. This, among others, includes a specific global database scheme via selected CDB

6

(Component Database System). Thus the user is able to configure a integrated data scheme meeting his particular
needs.

Data Integration
The core of the BioDataServer is the integration layer. It merges the data of the CDB logically, following the
rules of the previously defined global data schemes. The required access to the CDB is transparent to the user.
Therefore a query to the global data scheme is analysed and decomposed into corresponding sub queries to the
CDB. Finally the resulting sub findings are merged into an integrated set of findings.

Data Base Adapter
Actual access to the data of the CDB is achieved by means of so called adapters which are essentially nothing
else than drivers with a defined access interface reading the data of the CDB.

Adapter Manager
The Adapter Manager serves the purpose to organise the adapters of the in the system involved data bases. This
includes the provision of functions to load the adapters as well as to provide a list with all currently to the system
connected adapters.

Adapter Server
When planning the system’s architecture a component was incorporated which administrates an archive of data
base adapters. Hence the advantage of that architecture is the provision of a great variety of verified adapters.
Following this line, users of molecular biological data bases is given the opportunity to publish their data bases
by simply entering corresponding adapters for their data bases into the Adapter Server. Since a description for
the functional interface of these adapters is at hand, a method exists which serves as a base for a unique access to
molecular biological data bases.

Ontology component, 3 tier
Whereas the MARGBench is a database integration system which has already been implemented, the ontology
component is a system which is presently being developed.

The ontology component is designed as a three tiered system:
• a relational database which stores the ontology, including the meta-database information,
• a java applet that provides as a graphical user interface from which the ontology can be edited
• and a java servlet (middle tier) connects the database system and the applet via JDBC (figure 3).
Following the model, view, controller paradigm, the relational database is the model, the servlet the controller
and the applet gives a view of the ontology. This clear separation of functionality makes it possible that several
users can access the ontology at the same time by giving every user his own view (applet) of the database. Thus
changes to the model (relational database) can be updated in all views at runtime. The controller (servlet)
performs the tasks of consistency checking, checking of access permissions, and session tracking.

The ontology component has two functions: On the one hand it serves as a meta-database for the federated
database system and on the other hand it provides an intelligent user interface for querying the integrated
databases. For these two tasks two different view components (applets) will have to be used.

Fundamentally, an ontology is a set of nodes and a set of edges. The edges connect the nodes, thus creating a net.
An unlimited number of edge types may be defined, such as is_a, synonym, homonym, consists_of,
is_database_field. This makes it easy to store an ontology as a relational database (Table 1). Note that this is a
database scheme for a relational database that contains information about databases.

Node, Edge and EdgeType are all relations needed to store an ontology in a relational database system.
However, in order to extend the functionality from a simple ontology to a ontology based meta-database,
relations for storing information about databases are needed. The relation DB contains general information about
database systems. Since each database may consist of more than one relation, information about relations will be
stored in a separate relation called DBTable. DBField contains information about database attributes. The
attribute DBField.PerlScript contains a Perl script or a regular expression for extraction and/or conversion of the
database reply. The relation NodeFieldBinder, binds the database attributes to the relevant concepts of the
ontology.

7

Table 1: Relational database scheme for an ontology based meta-database.

Relations Attributes Data Type Description

Node: NodeID identifier for a node
Node_Label text
Description text

EdgeType ETypeID identifier for an edge type
EtypeLabel {is_a, synonym, homonym, ...}
ETypeDescription text

Edge: EdgeID identifier for an edge
EdgeType ETypeID
FromNode NodeID the edge connects the nodes

FromNode and ToNode
ToNode NodeID

DB: DBID identifier for a database
DatabaseName
DatabaseSystem {Oracle7, sybase, ...)
Interface {SQL, http}
Host only needed for SQL databases
Port only needed for SQL databases
Username needed when access to the database

is restricted on the user level
Password

DBTable: TableID Database identifier
Tablename
BelongsToDB DBID
KeyURL URL pointer to the key attribute of

the Table, only needed for non SQL
DBs

DataURL base URL for querying, only
needed for non SQL DBs

DBField: DBFieldID Database Field identifier
FieldName
BelongsToTable TableID
PerlScript Perlscript or regular expression for

data extraction and conversion

NodeFieldBinder FromNode NodeID binds database fields to the relevant
nodes of the ontology

ToDBField DBFieldID

However, for a “real world application”, the scheme will have to be more elaborate. It might be necessary to use
two different relations for each of the DB, DBTables, DBFields relations, to make up for the differences between
http and SQL databases and thus normalising the database further. Timestamps, contact address and email etc. of
database provider are important information in a real world environment. In addition, mechanisms like user
based access restrictions for accessing and modifying certain areas of the ontology will have to be used.

Thus it is possible to store ontologies in relational databases. However, editing or even understanding ontologies
by using the user interfaces of standard database management systems, i.e. tables or forms, would be too difficult
to survey. Therefore we decided to provide access to the ontology via a graphical user interface in a web browser
by a java applet. In this user interface, the ontology will be displayed as a net with nodes and edges and can be
edited in a user friendly way. The functionality of this ontology editor will be similar to the ontology editor
which is written in PROLOG-Tcl/Tk by (Schulze-Kremer 1998). In favour of extended functionality for database

8

management, some advanced features of the PROLOG ontology editor will not be implemented in this java
version.

How can ontology and meta-database functionality be merged in a user interface? Nodes, i.e. concepts of the
ontology can be expanded over an edge type. Thus a user can selectively browse a selected hierarchy, for
example is_a or synonym. Even though a database field has different attributes than a node (see database scheme
in Table 1), database fields will be seen like a node which can be expanded over a has_fields edge. In our
relational database scheme the has_field edge is an element of the NodeField relation. When the user expands a
concept over the has_field hierarchy, he will be able to access the database fields which implemented this
concepts. When he selects one of these database fields, he will have access to the relevant parameters of the
appertaining database.

How does database integration work, once the database provider has entered all relevant information about his
database to the ontology? Since the information about the database will be stored into a relational database, this
information can be retrieved using SQL, and if necessary JDBC, from any other application with access
permission to the ontology meta-database. Thus the MARGBench can easily and prospectively automatically
retrieve the information needed for adapter generation from this database.

How can the user query the databases? We intend to provide an intuitive yet powerful query interface which can
be understood and used by non computer scientists. Fundamentally the query interface could have the
subsequent structure: <Node 1>:<term 1> + <Node ...>:<term ...> + <Node n>:<term n> where <OntologyNode
x> is an ontology concept and <term x> is a field entry to be searched for. Example: “Protein:amylase +
Organism:mouse” means query databases for amylase in mice. When entering the query, the user can use the
graphical representation of the ontology and thus browse the ontology for the concepts he is looking for. Since
the user uses ontology concepts in the query terms (i.e. nodes) and not database attributes, the first step in
evaluating this query term will be to retrieve the appertaining database attributes, including all subconcepts (i.e.
connected by is_a edges) or synonyms (i.e. synonym edges) of organism or protein. From this list of attributes,
SQL queries can be processed and used to query the MARGBench. However, before SQL queries can be sent to
the MARGBench, a user scheme for the MARGBench has to be generated. The user scheme contains the global
scheme for the MARGBench (see previous section). Thus each user or each application that collaborates with the
MARGBench can use its own global scheme. For simultaneous querying of several databases, this user scheme
would not be needed. However, for further data integration and the evaluation of inter database query terms such
as joining a relation with a relation of another database, the MARGBench needs this additional information.
After the user scheme has been sent to the MARGBench, the SQL queries can be sent to the MARGBench which
evaluates them, i.e. translates the SQL queries into the proprietary query terms of the relevant federated database
systems. The replies of the federated databases will be merged by the MARGBench and sent back to the
ontology component which displays the query result to the user.

In the subsequent section an imaginary database query will be used to demonstrate how the ontology system and
the MARGBench co-operate to provide the full functionality which is described in the introduction.
The above mentioned “Protein:amylase + Organism:mouse” example will be used. See also figure 3.

1.) User enters query via the ontology interface (ontology and data view).
2.) The query term is sent to the servlet component. The servlet searches the model component, i.e. the

relational database for the relevant concepts by retrieving the subconcepts and synonym concepts (is_a and
synonym hierarchies) via SQL queries. Homonyms will also be checked. If homonyms exist, the user will
be asked to choose the correct concept. For protein the subconcept enzyme will be found. For organism the
synonym concept species will be found. Depending on the size of the ontology, many more synonyms and
subconcepts might be found.

3.) The servlet component retrieves from the ontology model the database fields, relations and tables
information which are bound to the protein, enzyme, species and organisms concepts. This information can
be accessed by querying the relations NodeFieldBinder, DBFields and DBTables from the above mentioned
relational database scheme (see Table 1). It will be found that for example two databases X and Y contain
relations with information about all concepts (subconcepts and synonyms) of proteins and organisms. It will
be assumed that they have the relations PROTEIN{ProteinID, name, spec, description} and
ENZYME{ec_number, name, org, author}. In a real query, many more databases and relations would
contain information about the mentioned concepts. The number of relevant database relations might actually
be so big that the user might have to be asked to select some database relations for further processing.

4.) A temporary integrated scheme for selected ontology nodes (concepts) will be generated and sent to the
MARGBench. In this scheme the attribute labels to be used in the subsequent SQL query will be mapped to
the labels as used in the databases. Thus it is possible to use the terminology of the ontology for the SQL
query term. However each relation has to have its own name. So the relations PROTEIN will be declared as

9

protein1 and its attributes name and spec to protein and organism. ENZYME will be declared as protein2, its
attributes name and org will be called protein and organism. In order to simplify this example, all other
attributes will not be mapped.

5.) The servlet component can now create and send the appropriate SQL queries to the MARGBench: SELECT
* FROM protein1 WHERE protein=amylase and organism=mouse; SELECT * FROM protein2 WHERE
protein=amylase and organism=mouse

6.) The MARGBench determines which adapters will have to be used
7.) The appropriate subqueries will be generated by the subquery builder and sent to the adapters
8.) The adapters translate and send the subqueries to the appropriate databases
9.) The databases send the replies to the adapters
10.) The adapters send the replies to the “result set integration”, i.e. the different formats of the replies will be

unified. From databases which provide only HTML files as replies, the relevant information will be
extracted.

11.) From the “Integration Layer” the MARGBench will send these replies to the servlet component of the
ontology

12.) The servlet sends the reply to the user via the ontology and data view. Thus the user will get the appropriate
records {ProteinID, name, spec, description} of the relation PROTEIN and the records for the attributes
{ec_number, name, org, author} of the ENZYME relation.

Figure 3: Components of the MARGBench and the ontology component.

Discussion

As can be seen from the example session, the combination of the MARGBench and the ontology system fulfils
the system requirements as mentioned in the introduction.

MARGBench:

DB1 DBnDB ...

Ontology:

 View ontology & data
(applet)

 model (relational DB) controller (servlet)
3

Database
query

1 2 user

 Query Processor

 Integration

Integrated data
schemes

4
5

Adapter1 Adapter nAdapter...

6

7

8, 9

10

11

11

11

12

10

However the quality of the system largely depends on the quality of the ontology. Quality can be assured by
three mechanisms: Provision of a base ontology which can not be modified, access restriction and rules. A static
base ontology will serve as a starting point for database providers to attach their databases to. The base ontology
should contain the main concepts relevant to molecular biological science such as DNA, enzyme, cell, species
etc. but also concepts important for information retrieval such as author (of a publication), abstract title etc. The
base ontology makes sure that the main concepts are absolutely correct and also helps users to get an orientation
in the ontology. Therefore the base ontology should only be modified when it is absolutely necessary. Since the
ontology is a system that can be accessed by everybody by the internet, at least write access has to be restricted
on the user level and to certain areas of the ontology. Giving everybody read access to the ontology and
permission to use the query interface of the system can not lead to damage. However modifications of the
ontology has to be controlled. Therefore it seems to make sense to give database providers access to the ontology
in a way that they can add concepts and meta-database information. However, a database provider should only
be allowed to delete or modify concepts which he himself has created. The base ontology can only be modified
by MARGBench/ontology operators. Last not least, rules which at every time are valid can be given. On the one
hand consistency checking of the most important relation types, such as is_a, synonym and homonym can be
used to improve the quality of the ontology. Consistency checking makes sure that situations like A synonym B,
B synonym C and C homonym A may not occur. This seems to be trivial, however in a large ontology these
errors easily occur. Other rules like “Every node has to be connected to a concept by an is_a edge” can be given.

In the database integration approach introduced here, an easy to use yet powerful user interface was introduced
and designed for a human user. However, the information in the ontology meta-database might also be useful for
other applications which might want to access the ontology directly. This could be achieved for example by
providing direct access to the model component of the ontology via SQL/JDBC. Special functions for finding all
subconcepts and/or synonyms of an specified concept ontology could be provided.

However, not all problems concerning database heterogeneity can be solved with this system. The ontology
defines the semantics of database attributes, but not terms which occur in database entries. Thus, only if the same
format is used for database entries of the federated databases, “advanced” database operations as joining two
records can be used. In our system, by using Perl scripts for data conversion this problem can in some cases be
overcome. However, complex database entries like species names can not easily be converted. Even the
systematic species nomenclature following Linné does not help in this situation: some species names are
constantly being changed by phylogeneticians and even if the species names are generally identical, the spelling
of the species might differ: upper case, lower case, abbreviations (sp., spec.) and subspecies make things
difficult, not to mention spelling mistakes. One way to solve problems of this nature would be to use pointers to
the relevant ontology concepts for definition of entries. These pointers could be URLs (Universal Resource
Locators), thus entries with the same URLs are equal. The imagined URL www.molbioontology.net/~enzyme
could be used to define the term enzyme. By entering this URL to a web browser the relevant concept could be
displayed either graphical as a node in the ontology web or as a descriptive HTML page. This system could also
be used to write text in HTML where ambiguous terms can be defined by links. However, this would require to
create large knowledge repository which is permanently online. However, using this approach for
homogenisation of database entries would only work between databases which use this method, i.e. many
database entries would have to be updated manually with links to the appropriate ontology concepts. Another
problem concerning data format are non ASCI based data fields such as image data. However, conversion of non
ASCI data might be achieved by calling native conversion software on the MARGBench from the Perlscripts
given by the database provider.

Many ontologies already exist. However, ontology management systems and ontology data are not always
strictly separated. In some ontology systems management systems relations can not be easily modified or added
since relations between concepts are often more or less hardcoded. Therefore we tried to make our ontology
system as softcoded as possible, i.e. new concepts and relations can be introduced and all concepts, labels of
concepts, relations and labels of relations etc. can be modified. Nonetheless, exporting hardcoded ontologies
should be possible. In order to exchange ontologies between ontology management systems or maybe even to
merge ontologies, a standardised exchange format is wanting. One prerequisite for ontology exchange would be
to agree about a set of properties which each ontology management has to provide, such as support for one to
several “root concepts”, whether or not a fixed set of new relation types has to be used, whether or not all nodes
have to be connected by at least an is_a relation etc.. Once a set of ontology properties has been agreed upon,
defining a unified exchange format, for example an xml “dialect” (http://www.w3.org/XML/) is a technical
problem.

The database integration approach presented in this paper has several advantages but also some disadvantages
when compared to the datawarehouse approach. Even though the MARGBench caches data, response of queries
might in some cases be slow. This might be especially significant, when complex queries like joining two big

11

relations of different databases have to be made. An issue which does not only concern federated databases is the
loss of special i.e. proprietary database functions which require heavy computing, elaborate computing
algorithms or large data datasets, such as summarised by Persson 2000. These can not be used in any integration
approaches because only data and not database operations can be exported. This is due to the fact that database
operations are generally closely coupled to the database management or operating system. Another topic in
database integration is the quality of genome data which has recently become an issue (Harger et al. 1998,
Andrade et al. 1999, Cotton and Horaitis 2000). However, the database federation approach has several
advantages. It is dynamic, i.e. databases can be added to the federation system at runtime and updates of the
databases take immediately effect. Modifications to the database scheme are also possible after the databases
have joined the database federation, however, modifications might eventually require an update of the ontology
meta-database. However, these updates can be managed by the database providers themselves. Depending on the
database system and its interface, binding a new database to the federation system can be largely automated.
Almost any types of database systems (object orientated, relational or file systems accessed by cgi) can join the
federated system. The fact that the ontology system is not limited in contend or size, makes it possible that any
number of databases independent of their contend can join the federation system. However, diskspace, network
traffic and computer power limits the number of federated databases. Last not least it should be mentioned that
the number of integration steps necessary for the integration of n databases is n²/2, i.e. in the datawarehouse
approach every database has to interface each other database whereas in the federation approach each database
only has to provide one interface to the federation system.

Literature

Agarwala, R., D. L. Applegate, D. Maglott, G. D. Schuler, and A. A. Schaffer. 2000. A fast and scalable
radiation hybrid map construction and integration strategy. Genome Res 10:350-364.

Aldhous, P. 1990. Human genome project. Database goes on-line [news]. Nature 347:9.
Andrade, M. A., N. P. Brown, C. Leroy, S. Hoersch, A. de Daruvar, C. Reich, A. Franchini, J. Tamames, A.

Valencia, C. Ouzounis, and C. Sander. 1999. Automated genome sequence analysis and annotation.
Bioinformatics 15:391-412.

Baker, P. G., A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens. 1998. TAMBIS: Transparent Access to
Multiple Bioinformatics Information Sources. An Overview. in sixth International Conference on
Intelligent Systems for Molecular Biology, Montreal.

Baker, P. G., C. A. Goble, S. Bechhofer, N. W. Paton, R. Stevens, and A. Brass. 1999. An ontology for
bioinformatics applications. Bioinformatics 15:510-520.

Baxevanis, A. D. 2000. The molecular biology database collection: an online compilation of relevant database
resources. Nucleic Acids Res 28:1-7.

Burks, C. 1999. Molecular Biology Database List. Nucleic Acids Res 27:1-9.
Cotton, R. G., and O. Horaitis. 2000. Quality control in the discovery, reporting, and recording of genomic

variation. Hum Mutat 15:16-21.
Dashti, A. E., S. Ghandeharizadeh, J. Stone, L. W. Swanson, and R. H. Thompson. 1997. Database challenges

and solutions in neuroscientific applications. Neuroimage 5:97-115.
Freier, A., R. Hofestdt, M. Lange, and U. Scholz. 1999. MARGBench - An Approach for Integration, Modeling

and Animation of Metabolic Networks. Pages 190-194 in R. Giegerich, R. Hofestdt, T. Lengauer, W.
Mewes, D. Schomburg, M. Vingron, and E. Wingender, editors. Proceedings of the German Conference
on Bioinformatics, Hannover.

Giudicelli, V., and M. P. Lefranc. 1999. Ontology for immunogenetics: the IMGT-ONTOLOGY. Bioinformatics
15:1047-1054.

Goksel, A., and D. McLeod. 1999. Semantic heterogeneity resolution in federated databases by metadata
implantation and stepwise evolution. VLDB Journal 8:120-132.

Gruber, T. R. 1993a. Toward principles for the design of ontologies used for knowledge sharing. in N. G. a. R.
Poli, editor. International Workshop on Formal

Ontology. Kluwer Academic.
Gruber, T. R. 1993b. A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition

5:199-220.

12

Harger, C., M. Skupski, J. Bingham, A. Farmer, S. Hoisie, P. Hraber, D. Kiphart, L. Krakowski, M. McLeod, J.
Schwertfeger, G. Seluja, A. Siepel, G. Singh, D. Stamper, P. Steadman, N. Thayer, R. Thompson, P.
Wargo, M. Waugh, J. J. Zhuang, and P. A. Schad. 1998. The Genome Sequence DataBase (GSDB):
improving data quality and data access. Nucleic Acids Res 26:21-26.

Karp, P. D. 1995. A Strategy for Database Interoperation. J Comput Biol 2:573-586.
Kashyap, V., and A. Sheth. 1996. Schematic and Semantic Similarities between Database Objects: A Context-

based Approach. VLDB Journal 5.
Krawczak, M., E. V. Ball, I. Fenton, P. D. Stenson, S. Abeysinghe, N. Thomas, and D. N. Cooper. 2000. Human

gene mutation database-a biomedical information and research resource. Hum Mutat 15:45-51.
Leser, U., H. Lehrach, and H. Roest Crollius. 1998. Issues in developing integrated genomic databases and

application to the human X chromosome. Bioinformatics 14:583-590.
Macaulay, J., H. Wang, and N. Goodman. 1998. A model system for studying the integration of molecular

biology databases. Bioinformatics 14:575-582.
Matsuda, H., I. Imai, M. Nakanishi, and A. Hashimoto. 1999. Querying Molecular Biology Databases by

Integration Using Multiagents. IEICE TRANS. INF & SYST. E82-D:199-207.
Mena, E., V. Kashyap, A. Sheth, and A. Illarramendi. 1996. OBSERVER: An approach for Query Processing in

Global Information Systems based on Interoperation across Pre-existing Ontologies. in IFCIS
International Conference on Cooperative Information Systems, Brussels, Belgium.

Persson, B. 2000. Bioinformatics in protein analysis [In Process Citation]. Exs 88:215-231.
Schulze-Kremer, S. 1997. Adding semantics to genome databases: towards an ontology for molecular biology.

Ismb 5:272-275.
Schulze-Kremer, S. 1998. Ontologies for molecular biology. Pac Symp Biocomput:695-706.
Volot, F., M. Joubert, and M. Fieschi. 1998. Review of biomedical knowledge and data representation with

conceptual graphs. Methods Inf Med 37:86-96.

